Planar corner-cut square microcavities: ray optics and FDTD analysis.
نویسندگان
چکیده
We analyze corner-cut square microcavities as alternative planar microcavities. Ray tracing shows open-ray orbits that are 90-degree-rotated can oscillate between each other upon reflections at the 45-degree corner-cut facets, and have the same sense of circulation. Our two-dimensional finite-difference time-domain simulations suggest that a waveguide-coupled corner-cut square microcavity with an optimum cut size supports traveling-wave resonances with desirable add-drop filter responses. The mode-field pattern evolutions confirm the concept of modal oscillations. By applying Fourier transform on the mode-field patterns, we analyze the modal composition in k-space. The add-drop filter responses can be optimized by fine-tuning the waveguide width.
منابع مشابه
Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities.
We report a numerical and analytical study of mode field patterns and mode coupling in planar waveguide-coupled square microcavities, using two-dimensional (2-D) finite-difference time-domain (FDTD) method and k-space representation. Simulated mode field patterns can be identified by k-space modes. We observe that different mode number parities permit distinctly different mode field patterns an...
متن کاملPhotonic crystal characterization by FDTD and principal component analysis.
We demonstrate the capabilities of principal component analysis (PCA) for studying the results of finite-difference time-domain (FDTD) algorithms in simulating photonic crystal microcavities. The spatial-temporal structures provided by PCA are related to the actual electric field vibrating inside the photonic microcavity. A detailed analysis of the results has made it possible to compute the ph...
متن کاملDiffraction from carbon nanofiber arrays.
A square planar photonic crystal composed of carbon nanofibers was fabricated using e-beam lithography and chemical vapor deposition. The diffraction properties of the system were characterized experimentally and compared with theory and numerical simulations. The intensities of the (-1,0) and (-1,-1) diffraction beams were measured as functions of the angles of incidence for both s and p-polar...
متن کاملSemiconductor Optical Microcavities for Chip-Based Cavity QED
Optical microcavities can be characterized by two key quantities: an effective mode volume Veff, which describes the per photon electric field strength within the cavity, and a quality factor Q, which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q offer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics (cavity...
متن کاملCharacteristics of Metal Enhanced Evanescent-Wave Microcavities
This article presents the concept of storing optical energy using a metallic air gap microcavity. Evanescent waves are stored in the air gap of a dielectric/metal/air gap/metal planar microcavity. For an air gap with a micron scale distance between the two metals, incident light excites the optical interface modes on the two metal-air interfaces simultaneously, being accompanied by enhanced eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 12 20 شماره
صفحات -
تاریخ انتشار 2004